If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+144p+2025=0
a = 1; b = 144; c = +2025;
Δ = b2-4ac
Δ = 1442-4·1·2025
Δ = 12636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12636}=\sqrt{324*39}=\sqrt{324}*\sqrt{39}=18\sqrt{39}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(144)-18\sqrt{39}}{2*1}=\frac{-144-18\sqrt{39}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(144)+18\sqrt{39}}{2*1}=\frac{-144+18\sqrt{39}}{2} $
| 5(4w+5)/3=8 | | (2.5+.5x)=1.25 | | 2(x-3)-5(x̟+9)=0 | | 2.5+.5x=1.25 | | 7p^2+3=54p | | 2x•x=96 | | 60(x)=60(x+15)-2x(x+15) | | x^-5x=14 | | x+0.19x=1000 | | x^2-50x-625=0 | | 4x-5+22-5x=180 | | 3(-x)+2x+8=3x-2x+8 | | 3x+28=13x-32 | | 2x-5+4(-x)=5+3x | | 2x-6-6x=6 | | 8x(x^2+12)=0 | | 4x=2(-x)+10+2x+18 | | 6x(3x+5)=10 | | 2(x-3)-6x=6 | | l=9.8*2^2/4π^2 | | l=9.8*2^2/4π^2/4π^2 | | 5x+-2=3(-x)-10 | | 4x-1=14x-21 | | 9n=4n | | z/7+6=4 | | 2(5x-6)=30 | | 4z/10=8=-3 | | 4z.10+8=-10 | | 5t-10t²=0 | | x/8+7=-1 | | -10z-7=8 | | 7e+3=9=3e |